Sánchez-García, D., Rubio-Bellido, C., del Río, JJM & Pérez-Fargallo, A. In the direction of the quantification of vitality demand and consumption via an adaptive consolation method in combined mode workplace buildings contemplating local weather change. Constructing Power. 187173–185 (2019).
Ghajarkhosravi, M., Huang, Y., Fung, AS, Kumar, R. & Straka, V. Power benchmarking evaluation of multi-unit residential buildings (MURBs) in Toronto Canada. J. Building. Eng. 27100981 (2020).
Berardi, U. & Jafarpur, P. Assessing the impression of local weather change on constructing heating and cooling vitality demand in Canada. Change. Maintain. Power Rev. 121109681 (2020).
González-Eguino, M. Power poverty: An outline. Change. Maintain. Power Rev. 47377–385 (2015).
Gupta, N. & Tiwari, GN Evaluate of passive heating/cooling programs in buildings. Power Sci. Eng. 4305–333 (2016).
Johnson, G. and so forth. Photo voltaic clear radiators via optical nanoantennas. Nano Lett. 176766–6772 (2017).
Ma, R., Wu, D., Liu, Y., Ye, H. & Sutherland, D. Copper plasmonic metamaterial glazing for thermal vitality administration. Mater. Of these. 188108407 (2020).
Wu, D., Meng, Y. & Liu, C. Design of clear metasurfaces primarily based on uneven nanostructures for directional and selective absorption. Supplies (Basel) 133751 (2020).
Guo, M. and so forth. Photo voltaic clear radiators primarily based on in-plane worm-like assemblies of steel nanoparticles. Sol. Power Mater. Sol. Cells 219110796 (2021).
Lee, W. and so forth. Clear selective photothermal coatings for antifogging purposes. Cell Rep. Phys. The Sci. 2100435 (2021).
Mitridis, E. and so forth. Metasurfaces that use photo voltaic vitality for icephobicity. ACS Nano 127009–7013 (2018).
Walker, C. and so forth. Clear metasurfaces stop fogging by utilizing daylight. Nano Lett. 191595–1604 (2019).
Rezaei, SD, Shannigrahi, S. & Ramakrishna, S. A assessment of typical, superior, and good glazing applied sciences and supplies for enhancing the indoor surroundings. Sol. Power Mater. Sol. Cells 15926–51 (2017).
Lechner, NM Heating, Cooling, Lighting: Sustainable Design Approaches for Architects (Wiley, 2014).
Google Scholar
ASHRAE. ASHRAE Handbook-fundamentals (2017).
d’Ambrosio Alfano, FR, Dell’Isola, M., Palella, BI, Riccio, G. & Russi, A. On the measurement of the imply radiant temperature and its affect on the content material of the thermal surroundings evaluation. Building. World. 6379–88 (2013).
residence, Nationwide design handbook prototype of passive photo voltaic heating and pure cooling of buildings. (United Nations Digital Library, 1990).
Sengupta, J., Chapman, KS & Keshavarz, A. Window efficiency for human thermal consolation. ASHRAE Trans. 111254–275 (2005).
Google Scholar
Mora, R. & Bean, R. Thermal consolation: Designing for folks. ASHRAE J 6040–46 (2018).
Google Scholar
Fortier, SM, Nassar, NT, Lederer, GW, Brainard, J., Gambogi, J. & McCullough, EA Draft vital mineral list-summary of methodology and background information-US geological survey technical enter doc in response to secretarial order no. 3359 (2018).
Takatori, Ok., Okamoto, T. & Ishibashi, Ok. Floor-plasmon-induced ultra-broadband gentle absorber working within the seen to infrared vary. Choose. Specific 261342 (2018).
Sure, D. and so forth. Broadband good absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array. Nanoscale Res. Lett. 12465 (2017).
Kenanakis, Mr. and so forth. Good absorbers primarily based on metal-insulator-metal buildings within the seen area: A easy method for sensible purposes. Appl. Phys. A Mater. The Sci. Course of. 12377 (2017).
Aalizadeh, M., Khavasi, A., Butun, B. & Ozbay, E. Massive-area, cost-effective, ultra-broadband good absorber utilizing manganese in metal-insulator-metal construction. The Sci. Rep. 89162 (2018).
Ghobadi, A., Hajian, H., Rashed, AR, Butun, B. & Ozbay, E. Tuning the metal-filling section of metal-insulator-metal ultra-broadband good absorbers to maximise bandwidth consumption. Photon. Res. 6168 (2018).
Chowdhary, AK, Bhowmik, T., Gupta, J. & Sikdar, D. Power-saving all-weather window primarily based on selective filtering of photo voltaic spectral radiation. Appl. Choose. 601315 (2021).
Kocer, H., Butun, S., Li, Z. & Aydin, Ok. Diminished near-infrared absorption utilizing ultra-thin lossy metals in fabry-perot cavities. The Sci. Rep. 58157 (2015).
Katsidis, CC & Siapkas, DI Generalized transfer-matrix methodology for optical multilayer programs with coherent, partially coherent, and incoherent interference. Appl. Choose. 413978 (2002).
Jiang, M., Luo, YP & Yang, SY Stochastic convergence evaluation and parameter choice in normal particle swarm optimization algorithm. Inf. Course of. Lett. 1028–16 (2007).
Chae, D. and so forth. Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces. 128073–8081 (2020).
Piotrowski, AP, Napiorkowski, JJ & Piotrowska, AE Inhabitants measurement in particle swarm optimization. Cease Evol. Comput. 58100718 (2020).
Marler, RT & Arora, JS Survey of multi-objective optimization strategies for engineering. Construction. Plenty of self-discipline. Optim. 26369–395 (2004).
Parsopoulos, KE & Vrahatis, MN Multi-Goal Optimization in Computational Intelligence: Concept and Observe (IGI international, 2008).
Google Scholar
Knight, MW and so forth. Aluminum for plasmonics. ACS Nano 8834–840 (2014).
Valkonen, E., Karlsson, B. & Ribbing, CG Photo voltaic optical properties of skinny movies of Cu, Ag, Au, Cr, Fe Co Ni and Al. Sol. energy 32211–222 (1984).
Dalapati, GK and so forth. Coloration tunable low price clear warmth reflector utilizing copper and titanium oxide for vitality saving software. The Sci. Rep. 620182 (2016).
Gherman, AMM, Vladescu, A., Kiss, AE & Farcau, C. Extraordinary optical transmission via a titanium nitride-coated microsphere lattice. Photon. Nanostruct. Basis. Appl. 38100762 (2020).
Guler, U. and so forth. Localized heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett. 136078–6083 (2013).
P, D. CRC handbook of chemistry and physics. J. Mol. construction. 268320 (1992).
Come again, ED Handbook of Optical Constants of Solids (Educational press, 1991).
Google Scholar
Pfluger, J., Fink, J., Weber, W., Bohnen, KP & Crecelius, G. Dielectric properties of TiCx, TiNx, VCx, and VNx from 1.5 to 40 eV decided by electron-energy- loss spectroscopy. Phys. Rev. B 301155–1163 (1984).
Wojdylo, P. Thickness optimization of ultrathin nickel movies as clear conductive electrodes. McMaster J. Eng. Phys. 21–4 (2017).
Google Scholar
Luke, Ok., Okawachi, Y., Lamont, MRE, Gaeta, AL & Lipson, M. Broadband mid-infrared frequency comb technology in a Si3N4 microresonator. Conf Lasers Electro-Choose. Eur. Tech. Digging. 404823–4826 (2015).
Google Scholar
Kulczyk-Malecka, J. and so forth. Investigation of silver diffusion in TiO2/Ag/TiO2 coatings. Acta Mater 66396–404 (2014).
Mahtani, P. and so forth. Diamond-like carbon primarily based low-emissive coatings. Sol. Power Mater. Sol. Cells 951630–1637 (2011).
Okada, M., Tazawa, M., Jin, P., Yamada, Y. & Yoshimura, Ok. Fabrication of photocatalytic heat-mirror with TiO2/TiN/TiO2 stacked layers. Vacuum 80732–735 (2006).
Yuste, M., Galindo, RE, Carvalho, S., Albella, JM & Sánchez, O. Enchancment of seen transmittance of low-e titanium nitride primarily based coatings for photo voltaic thermal purposes. Appl. Surf. The Sci. 2581784–1788 (2011).